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Abstract

Lightweight building surface models are crucial for digital city, navigation, and fast geospatial analytics, yet conventional multi-
view geometry pipelines remain cumbersome and quality-sensitive due to their reliance on dense reconstruction, meshing, and
subsequent simplification. This work presents SF-Recon, a method that directly reconstructs lightweight building surfaces from
multi-view images without post-hoc mesh simplification. We first train an initial 3D Gaussian Splatting (3DGS) field to obtain a
view-consistent representation. Building structure is then distilled by a normal-gradient-guided Gaussian optimization that selects
primitives aligned with roof and wall boundaries, followed by multi-view edge-consistency pruning to enhance structural sharpness
and suppress non-structural artifacts without external supervision. Finally, a multi-view depth-constrained Delaunay triangulation
converts the structured Gaussian field into a lightweight, structurally faithful building mesh. Based on a proposed SF dataset, the
experimental results demonstrate that our SF-Recon can directly reconstruct lightweight building models from multi-view imagery,
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achieving substantially fewer faces and vertices while maintaining computational efficiency.
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Figure 1. Samples of Lightweight Reconstruction Methods, #F denotes the number of triangular faces.

1. Introduction

Driven by advances in 3D vision and digital-twin technologies,
the rapid generation of lightweight building surface models has
become essential for indoor/outdoor navigation, geospatial ana-
Iytics, and large-scale urban simulation (Zhu et al., 2024). In
practice, however, the prevailing pipeline for producing light-
weight meshes from multi-view imagery remains lengthy and
brittle. A standard photogrammetric workflow first reconstructs
a sparse point cloud from structure-from-motion(SfM), then
performs multi-view stereo (MVS) and meshing to obtain a de-
tailed, high-fidelity surface model (Newman and Yi, 2006), and
finally applies mesh-simplification techniques, such as quadric
error metrics (QEM) (Garland and Heckbert, 1997), to reduce
the model complexity. This stage-wise process incurs substan-
tial computational and engineering overhead and ties the quality
of the lightweight mesh to the fidelity of the intermediate high-
complexity mesh, undermining robustness and reproducibility
in real deployments.

Neural scene representations, most notably 3D Gaussian Splat-
ting (3DGS) (Kerbl et al., 2023), offer a compelling alternat-
ive for multi-view reconstruction. Using explicit 3D Gaussian
spheres as primitives, 3DGS performs end-to-end differenti-
able optimization for scene reconstruction, eliminating much
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of the algorithmic complexity inherent in conventional stage-
wise workflows. Building on 3DGS, recent methods such as
PGSR (Chen et al., 2024) and 2DGS (Huang et al., 2024) ex-
tract meshes from trained Gaussian fields via Truncated Signed
Distance Function (TSDF) iso-surfacing (Zeng et al., 2017),
with voxel size directly controlling the number of faces and ver-
tices. Although these strategies can yield lightweight meshes
by adjusting the voxel size to control face and vertex counts,
they typically apply uniform meshing across regions, lack ex-
plicit modeling of building structure, and make limited use of
the multi-view cues available during training. Consequently,
salient building elements are often over-smoothed, and the re-
constructed surfaces lack structural completeness and distinct-
iveness, as evident in the qualitative comparisons in Fig. 1.

To address these limitations, based on 3DGS, this paper pro-
poses SF-Recon, a framework that reconstructs lightweight
building surface meshes directly from multi-view images, elim-
inating the need for post-hoc mesh simplification. The pipeline
consists of three main stages. First, an initial 3D Gaussian
Splatting (3DGS) field is trained from input views, producing
an explicit, view-consistent representation of scene appearance
and geometry. Second, we introduce a tailored Gaussian Splat-
ting for Building Framework, which isolates the subset of Gaus-
sians corresponding to structural elements through a normal-
gradient-guided optimization, and enhances structural sharp-
ness while suppressing spurious primitives using a multi-view
edge-consistency pruning strategy. Consequently, these can



align the Gaussian field with building boundaries in an unsu-
pervised manner, preserving key structures while maintaining
compactness. Finally, by leveraging the depth maps rendered
during training, a multi-view depth-constrained Delaunay trian-
gulation reconstructs a surface mesh that is both compact and
structurally faithful, facilitating efficient downstream mapping
and simulation. In summary, our contributions are threefold:

1. To the best of our knowledge, we are the first to unleash
3DGS for directly lightweight building surface mesh re-
construction by taking only multi-view images as input,
which can eliminate the need for post-hoc simplification
from a pre-reconstructed complex mesh.

2. We introduce two key components: a normal-gradient-
guided Gaussian optimization stage and a multi-view
edge-consistency pruning strategy, which jointly guide
the Gaussian field to explicitly encode building structures
(e.g., rooflines and wall boundaries) in an unsupervised
manner.

3. A multi-view depth-constrained Delaunay meshing al-
gorithm is developed, which converts the refined Gaussian
field into a compact yet structurally consistent surface, en-
abling fast reconstruction while preserving building integ-
rity.

2. Related Work

Relevant works on 3DGS-based lightweight building surface
reconstruction mainly follow two strands: (i) surface recon-
struction using 3D Gaussian Splatting and (ii) strategies for
lightweight mesh generation.

2.1 Surface Reconstruction based 3D Gaussian splatting

The advent of 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023) extends neural rendering from radiance synthesis to ex-
plicit geometry recovery by modeling scenes as collections
of parameterized Gaussian primitives. Early surface-oriented
variants introduced geometric regularization to align Gaussi-
ans with the underlying surfaces. SuGaR (Guédon and Lepetit,
2024) couples Poisson-style meshing with constraints that pull
Gaussians toward surface manifolds, achieving higher geomet-
ric accuracy than vanilla 3DGS. Nevertheless, the spatial irreg-
ularity of Gaussian distributions—particularly in low-texture or
specular regions—can produce fragmented reconstructions.

To mitigate depth ambiguity and cross-view inconsistency, sev-
eral works revise the underlying representation. 2DGS (Huang
et al., 2024) projects 3D Gaussians onto view-consistent 2D
disks, which stabilizes multi-view coherence and accelerates
rendering and meshing, but can introduce depth bias due to the
planar approximation. GOF (Yu et al., 2024) instead operates
on the opacity field induced by Gaussians and extracts geometry
via level-set identification; although it improves completeness
relative to 2DGS, enforcing global geometric consistency in
complex scenes remains challenging. PGSR (Chen et al., 2024)
employs planar-aligned Gaussians that encode surface normals
and signed distances, enabling analytic projection and multi-
view geometric regularization, and achieving strong geometric
accuracy and photometric fidelity compared with contempor-
ary baselines. In comparison, MeshSplat (Chang et al., 2025)
leverages 2DGS as a bridge to synthesize novel-view images

and transfers learned geometric priors to achieve sparse-view
surface reconstruction with improved consistency and accuracy.

Although 3DGS-based methods can produce visually smooth,
dense meshes, they are ill-suited to lightweight building recon-
struction. Over-densification and irregular placement of Gaus-
sian primitives inflate memory and introduce many redundant
facets, yielding models that exceed lightweight budgets. For
mesh extraction, TSDF iso-surfacing—used in methods such as
2DGS and PGSR—can throttle face counts via voxel size, but
its uniform simplification degrades geometric fidelity and struc-
tural integrity, softening edges and distorting salient features
(e.g., roof ridges and wall boundaries). Efficiently exploiting
3DGS to recover compact meshes that preserve complete build-
ing structure, thus remains a central open challenge.

2.2 Lightweight Mesh Reconstruction

Traditional pipelines for lightweight mesh reconstruction be-
gin with high-precision dense point clouds, generate an initial
detailed mesh via Poisson reconstruction or Delaunay triangu-
lation, and then reduce complexity using quadric error metrics
(QEM) (Garland and Heckbert, 1997), structural simplification
(Salinas et al., 2015), or hierarchical strategies (Li and Nan,
2021).

Building-oriented lightweight reconstruction methods typically
adopt low-polygonal modeling. Lafarge and Alliez (2013) iden-
tifies planar units via point-cloud structuring and assembles
regular polygonal meshes. PolyFit (Nan and Wonka, 2017)
produces lightweight polygonal models by combining robust
plane detection, patch-edge optimization, and topological re-
construction. Wang et al. (2023) further introduces semantics
to guide mesh simplification for semantic-aware lightweight-
ing. WindPoly (He et al., 2024) leverages the winding number
to achieve robust indoor—outdoor segmentation and topologic-
ally consistent reconstruction. However, these approaches are
highly data-dependent: reconstruction quality is tightly coupled
to the fidelity of the input point cloud or mesh. Moreover,
their pipelines are lengthy and serial, leading to error accu-
mulation and reduced stability. These limitations motivate a
shift toward neural representations and deep learning that re-
cover lightweight, structurally faithful building models directly
from readily acquired images.

Based on 3D Gaussian Splatting (3DGS), several multi-view
methods—EdgeGaussians (Chelani et al., 2025), SketchSplat
(Ying and Zwicker, 2025), and CurveGaussian (Gao et al.,
2025), recover 3D edge contours directly from images. While
effective for wireframe extraction, these approaches do not pro-
duce lightweight surface meshes and typically depend on auxil-
iary pre-trained networks to generate edge maps used as super-
vision. To the best of our knowledge, an end-to-end method that
reconstructs structurally complete and geometrically faithful
lightweight meshes directly from multi-view images (without
external supervision or pre-trained models) remains scarce. To
fill this gap, this work proposes SF-Recon, which employ 3DGS
and ingests only multi-view building imagery without any edge
priors for directly yielding lightweight building surface meshes
that preserve salient geometric structure.

3. Preliminaries of 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) represents a scene as a set of
parameterized 3D Gaussians. Each Gaussian is defined by a



center u € R? and a covariance matrix ¥ € R3**3, which
controls its spatial extent and orientation. The Gaussians are
defined as:

G(x) = exp(~ @ =) TS @ - p)) (1)

Gaussians are typically initialized from a sparse SfM point
set (Schonberger and Frahm, 2016) and optimized to a dense,
view-consistent scene representation. Each primitive carries an
opacity @ € [0,1] and a color attribute ¢ parameterized by
spherical-harmonic coefficients, enabling photorealistic view
synthesis. All parameters are differentiable and learned by min-
imizing a photometric objective over training views, commonly
a mixture of photometric loss L; and structural similarity loss

Lssim:
L=MXL1+(1—A)Lssrm (@)

To render a novel image, 3D Gaussians are projected to a view-
dependent 2D elliptical splat and perform front-to-back alpha
compositing. For a ray r, with splats {¢} sorted by depth, the
color is estimated as:

C(T)I ZTi_l 5 Ci, Ti :H(l_aj) (3)

ieM j<i

where M denotes the set of contributing splats, «; their opacit-
ies, and T’ _1 the accumulated transmittance.

A key property of 3DGS is that Gaussian positions, shapes,
opacities, and colors are continuously refined during training.
In this work, we impose structure-aware constraints and multi-
view pruning on the Gaussian primitives to bias the field to-
ward building edges (e.g., roof ridges and wall boundaries) and
suppress non-structural clutter, yielding a representation better
suited for lightweight building surface reconstruction.

4. Method

To overcome the complexity and quality limitations of conven-
tional lightweight building reconstruction, based on 3DGS, we
propose SF-Recon, which recovers lightweight building sur-
faces directly from multi-view images without post-hoc mesh
simplification. Our method first optimizes a 3D Gaussian Splat-
ting (3DGS) field to emphasize the building framework via
a normal-gradient-guided Gaussian optimization and a multi-
view edge-consistency pruning strategy (Section 4.1). Lever-
aging depths rendered during training, it then performs a multi-
view, depth-constrained Delaunay triangulation to produce a
compact yet structurally consistent surface mesh (Section 4.2).
The overall pipeline is shown in Fig.2

4.1 Gaussian Splatting for Building Framework

Gaussian Splatting for Building Framework builds on the 2DGS
training framework and introduces a normal-gradient-guided
Gaussian optimization and a multi-view edge-consistency prun-
ing strategy during training to refine the Gaussian field, thereby
improving the accuracy of the building-framework representa-
tion.

4.1.1 Normal-Gradient-Guided Gaussian Optimization
To ensure that the Gaussian field accurately captures the build-
ing framework, edge-localization guidance is injected into the
optimization process. This guidance biases Gaussian primitives
to concentrate along structural boundaries during split/merge

updates while suppressing occupancy in non-edge regions. In-
stead of relying on pre-trained single-view edge detectors, sur-
face normals are estimated in situ during training. These cues
are inherently multi-view consistent and do not require ex-
ternal supervision. Concretely, the primitives are temporarily
frozen to compute stable normal-gradient signals, which are
then incorporated into a structure-aware loss. This loss pro-
motes alignment with high-gradient regions and penalizes non-
edge coverage. The resulting gradients reallocate density to-
ward edges and reduce clutter, yielding a Gaussian field that
explicitly encodes the building framework.

Edge-Mask Extraction from Frozen Gaussian Field. The
Gaussian Field of the 20k iteration is frozen. Per-view nor-
mal maps are then rendered from the current Gaussian field,
which provides sufficiently accurate normals at this stage. To
obtain edge cues, each normal map is first denoised using total-
variation (TV) denoising, followed by the computation of im-
age gradients using Sobel filters. Pixels whose gradient mag-
nitude exceeds a threshold of 0.5 are labeled as edges, resulting
in a binary edge mask for each view.

The total-variation (TV) denoising problem seeks a denoised
image u by minimizing

B(u; T) = min / (IVu(@)P + Aue) ~ I@)?) dz @)

u

where Vu denotes the spatial gradient and A > 0 balances
smoothness and data fidelity.

The per-pixel gradient magnitude is then computed as

IVI(i, )| = /G (i, §)2 + Gy(i, 5)? (5)

where G (i,7) and Gy(i,7) are the horizontal and vertical
gradient components at pixel (¢, 7).

Edges are obtained by thresholding the gradient magnitude with
a parameter 7' > 0:

o L if VI, 5)| >T
M = 6
(3,) {O, otherwise ©

with M : Q — {0, 1} the resulting binary edge mask.

Loss Function Regarding Edge Mask. After extracting
building-edge masks, densification of the Gaussian field is re-
sumed for the subsequent 10k iteration optimization, and the
objective is redefined to incorporate a per-view binary edge
mask. This adjustment biases the Gaussian primitives toward
structural boundaries while down-weighting non-edge regions.
Let m(i) € {0,1} denote the edge mask and £ > 0 a small
constant for numerical stability. The mask-averaged ¢; loss is

S0y (i) [ Trender (i) — Tt (§)|
Z«LN:1 m(i) +¢

The SSIM loss is defined analogously:

)

L1 refined =

SN m(i) [1 = SSIM(Lender (1), Let(i))]
Zﬁil m(i) + e

LSSIM,reﬁned =

®
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Figure 2. The pipeline of SF-Recon

To further enforce normal alignment, the depth-derived normal
supervision used in 2DGS(Huang et al., 2024) is also applied,
and a mask-weighted normal loss is computed:

SN m(i) [1 = clip(n(é) naepen (i), —1,1)]
Zfil m(i) +¢

Lnormal;eﬁned =
)

where n(4) and ngepen(7) are unit normals from the renderer
and the depth map, respectively. The total loss combines the
image and normal terms:

Ltota] = A Ll,reﬁned + Az - Lssim;eﬁned

+ )\3 : Lnormaljeﬁned (10)

4.1.2 Multi-View Edge-Consistency Pruning Strategy In
the subsequent 10k training iterations, misassigned Gaussian
primitives can degrade geometric fidelity and inflate model
complexity. To address this, a multi-view edge-consistency
pruning strategy is introduced, which systematically removes
primitives that provide little or no support for structural bound-
aries. Each Gaussian primitive G; receives an edge score
e; € [0, 1] that indicates how consistently it projects onto build-
ing edges across various views; higher scores reveal stronger
support for edge (roof ridges and wall-facade intersections).

Let C be the set of training images. For image j € C with
projection matrix P; and per-view edge mask & C €, the

projection of the 3D location x; = (z;,yi, z:) ' is

mi(xi) =T(P;%;), %= (’;) (11)

where II(-) denotes homogeneous normalization to image co-
ordinates. The per-view edge-visibility indicator is defined as:
vij =1(m;(xi) € &) -1(Vij) (12)

where V;; is the visibility of G; in view j, which is determined

by the renderer’s visibility check.

1
e = T Z Vi (13)
jec
Primitives with e; below a threshold 7 are pruned:
gpruned = {Gz € g | e; < T} (14)

This pruning is applied at regular intervals over the subsequent
10K training iterations. Iteratively removing low-score prim-
itives produces a sparser, boundary-aligned Gaussian field that
concentrates capacity on salient edges, improving structural fi-
delity while reducing redundancy for downstream meshing.

4.2 Depth-Constrained Delaunay Triangulation Recon-
struction

This section consolidates the meshing pipeline: Starting from
building-framework points, reliable 3D point cloud to 2D im-
age visibility correspondences are established under multi-view
depth constraints. The surface is subsequently extracted via
a visibility-driven Delaunay graph cut, yielding a watertight
and structurally regular mesh. The pipeline is robust to view-
dependent sampling-density variations and occlusions, and of-
fers tunable parameters to balance geometric detail and surface
smoothness.

4.2.1 Depth-Constrained 3D-2D Visibility Validation
Establishing a stable one-to-one association between each 3D
point and its valid 2D observations is challenging because
point clouds produced by Gaussian training are typically dense,
exhibit view-dependent visibility, and yield overlapping or
occluded projections on the image plane. To mitigate these
factors, we construct a robust 3D-2D visibility relation using
the multi-view depth maps produced during training as a con-
straint. For each 3D point p and candidate view ¢, we project p
to the image; if the projection lies within the image bounds, we
sample the depth map at that location via bilinear interpolation
to obtain djng,;p. We then compute the expected depth dexp,ip
from the camera model along the viewing ray and accept the
correspondence when the ray-level depth consistency condition



holds:
|dexp,ip - dimg,ipl < €abs + 6reldexp,ip (15)

where €,1,s accounts for depth-independent effects such as inter-
polation error and minor calibration offsets, while €;.; models
depth errors that grow in proportion to scale. A point is deemed
visible and not occluded in view i only when inequality (15)
holds. Recording these validated pairs yields a stable, accurate,
and reproducible correspondence set that supports subsequent
visibility-driven surface reconstruction.

4.2.2 Visibility-Driven Delaunay Graph-Cut for Surface
Extraction Following Labatut et al. (2009), we perform
visibility-driven surface reconstruction within the Delaunay tet-
rahedralization of the input building-outline point cloud. The
tetrahedralization defines a set of tetrahedra and their shared
triangular facets. Surface extraction is formulated as an s—t
minimum-cut problem on the dual graph, with edge capacit-
ies that combine a visibility likelihood term and a geometric
regularization term:

J(E) = (I)vis(z) + 5(1)geo(2) (16)

where ¥ is the extracted surface, ®.;s is the visibility cost, Pgeo
is the geometric quality cost, and S balances the two terms.

The visibility cost measures how well each facet is supported
by the observations. Facets that lie closer to the reprojected
samples and are traversed by more consistent viewing rays re-
ceive a lower penalty ad are thus favored by the cut. For a facet
f.define the visibility cost:

uie(f) = ais(1— ") (17)
where s 1S a scaling factor related to per-facet visibility , d
denotes the distance from the reprojected 3D sample to the can-
didate facet f measured along the viewing ray, and o controls
the decay of the visibility kernel.

The geometric cost discourages irregular or degenerate facets,
preventing jagged cuts inside elongated or skewed tetrahedra.
For a facet f, define the geometric cost:

Pgeo(f) = 1 — min(cos p, cosv)) (18)

where ¢ and ¢ are the angles between the segment joining the
circumcenters of two adjacent tetrahedra and the normal to their
shared facet.

By minimizing the objective function J(X), each tetrahedron
is assigned an inside or outside label. The final building sur-
face is then formed by the interface facets shared by adjacent
outside/inside tetrahedra:

U fsharcd,fsharcd - T};)ut N Tlin (19)

Fsnared

Ybuilding =

out

where Yyuiding denotes the extracted building surface, T}
and T}" are tetrahedra labeled as outside and inside, respect-
ively, and fshared is their common triangular face.

After surface extraction, we apply a post-filtering step based on
a maximum edge-length criterion to remove spurious or isolated
triangles, producing a smoother surface. The proposed meshing
pipeline preserves geometric regularity and smoothness while

allowing the mesh detail to adapt to the local point-cloud dens-
ity, enabling multi-level reconstruction.

4.3 Experimental Datasets

Owing to the absence of multi-view datasets that include both
real textures and ground-truth lightweight meshes for buildings,
we introduce a novel dataset, referred to as SF, consisting of
10 manually reconstructed buildings, each with photorealistic,
baked textures. For each building, 80 views are rendered at a
resolution of 1000 x 1000, using a spiral trajectory that encircles
the building while varying elevation. This ensures comprehens-
ive multi-view coverage and sufficient overlap between views.
Each image is generated with calibrated camera intrinsics and
extrinsics, facilitating reproducible multi-view geometry exper-
iments. Some samples are presented in Fig.3.
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Figure 3. The sample of SF dataset. (a) Camera trajectory
around the building, (b) Textured 3D model of the building, (c)
Ground truth mesh of the building.

5. Experiments

Baselines and Implementation. SF-Recon is compared with
three baselines: PGSR, 2DGS, and the commercial-software
Metashape (LLC, 2022), as no existing approach is specifically
designed for the direct reconstruction of lightweight building
meshes from multi-view images, these methods are the most
relevant for our comparison. All experiments are conducted on
a workstation configured with an Intel Xeon Gold 6133 CPU
and an NVIDIA RTX 4090 GPU. To ensure a fair comparison,
in PGSR and 2DGS the Gaussian fields are trained on multi-
view images for 30,000 iterations, after which TSDF fusion
is applied to the predicted depth maps to extract meshes. The
number of generated mesh elements is controlled by adjusting
the TSDF voxel size. For Metashape, we adjust the reconstruc-
tion settings to produce meshes with reduced polygon counts,
so that the reconstructions from all methods contain approx-
imately the same number of faces and vertices.To evaluate the
impact of the number of training iterations on mesh quality, we
cap training at 10,000 iterations, scale all stages proportionally,
and report a second set of reconstructions.

Metrics. Following (Wang et al., 2023), to evaluate the per-
formance of various methods, the number of faces and vertices,
total reconstruction time, and mesh reconstruction error are re-
ported. The mesh reconstruction error is defined as the root
mean square error (RMSE) of the distances from each vertex
of the reconstructed mesh to its nearest triangle on the ground-
truth mesh.

min |lv — PA(v)H2
AE Mgy

veEmzZ,.

RMSE = (20)

Imic|

where mZ. denotes the set of vertices of the reconstructed
building mesh, and My, is the ground-truth model represented



SF001 m
4 ~
#F=879
#F=750
~—
#F=1942
#F=1837
#F=1756
#F=019 #F=020 #F=006 #F=805 #F=T11
Initial Model Metashape 2DGS PGSR SF-Recon SF-Recon
(voxel size=0.26) (voxel size=0.35) (iterations=10000) (iterations=30000)
Figure 4. Qualitative comparison on SF dataset. #F denotes the number of triangular faces.
&
#F=T94
LAy
SF009 '

#F=1756 #F=1840 #F=1265 #F=1257 #F=1238 #F=1312

Initial Model metashape metashape SF-Recon SF-Recon SF-Recon SF-Recon
1000*%1000 500*500 (iterations=10000) (iterations=10000) (iterations=30000) (iterations=30000)
1000*1000 500%500 1000*1000 500*500
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Table 1. Quantitative evaluation results on the SF datasets. Best values are in bold.

Method Faces Count Vertices Count Time (mins) RMSE (m)
PGSR 1063 563 28.3 0.2874
2DGS 1137 561 12.3 0.3809
Metashape 1153 518 2.7 0.2652
SF-Recon(10000) 926 472 29 0.0763
SF-Recon(30000) 914 467 9.5 0.0456

Table 2. Ablation study of SF-Recon modules. NG-GO: normal-gradient-guided optimization; ECP: multi-view edge-consistency
pruning; DCD: depth-constrained Delaunay triangulation. Best values are in bold.

. Modules Quantitative results
Configuration
NG-GO ECP DCD Faces Vertices Time (min) RMSE (m)
Ablation 1 v X v 1016 527 9.9 0.1002
Ablation 2 v v X 1266 544 9.6 0.4781
Ablation 3 X X v 1001 505 12.1 0.1962
Full (SF-Recon) v v v 914 467 9.5 0.0456

as a triangular mesh. For a triangle A € Mg, Pa(v) € A
is the closest point (orthogonal projection) of vertex v onto the
surface of A.

5.1 Comparisons with Other Methods

Qualitative experiments are conducted on the proposed SF
datasets, which are shown in Fig. 4. It can be seen that
Metashape successfully generates high-quality meshes but with
numerous redundant facets and irregular surfaces, even un-
der simplified settings. In contrast, 2DGS and PGSR pro-
duce smoother yet overly simplified meshes, as voxel-grid iso-
surfacing lacks explicit structural priors (e.g., roof ridges, wall
boundaries) and does not fully leverage multi-view geometric
consistency during training, resulting in the loss of important
building details. Additionally, PGSR’s multi-view consistency
loss is sensitive to repetitive textures commonly found in urban
scenes. SF-Recon strikes a favorable balance between struc-
tural fidelity and compactness, producing lighter meshes while
preserving key building structures, such as the roofs and walls.

Quantitative results in Table 1 substantiate the advantage of SF-
Recon. With comparable number of face and vertex, SF-Recon
achieves a markedly lower RMSE than other competing meth-
ods. Even with only 10,000 training iterations, SF-Recon main-
tains competitive accuracy and achieves a runtime comparable
to that of Metashape.

5.2 Ablation Studies

To evaluate the effectiveness of each module in SF-Recon, three
ablations are designed, as summarized in Table 2. Each abla-
tion replaces or removes specific modules to investigate their
individual impact on the reconstruction compactness, structural
fidelity and runtime,with all ablation conducted under 30,000
iterations.

Ablation 1. This variant retains normal-gradient-guided Gaus-
sian optimization and depth-constrained Delaunay triangulation
but omits the multi-view edge-consistency pruning. Without
this pruning step, spurious Gaussian primitives from non-edge
regions are preserved, leading to redundant structures and no-
ticeable surface noise, which degrade model compactness.

Ablation 2. Here, normal-gradient-guided Gaussian optim-
ization and edge-consistency pruning are applied, but the fi-
nal mesh is generated via TSDF fusion instead of multi-
view depth—constrained Delaunay triangulation. Although edge
pruning suppresses clutter and improves sparsity, TSDF-based
methods fail to construct triangulated meshes between different
building boundaries, resulting in the reconstruction of only the
building boundaries. Therefore, the TSDF method is not suit-
able for lightweight mesh reconstruction when combined with
SF-Recon.

Ablation 3. This configuration preserves only depth-
constrained triangulation. Without gradient guidance, Gaussian
primitives fail to align with structural boundaries, leading to
blurred roof ridges, softened wall intersections, and a general
loss of geometric sharpness, despite maintaining a similar mesh
size.

Overall, these ablation studies confirm that normal-gradient-
guided optimization, multi-view edge-consistency pruning, and
depth-constrained Delaunay triangulation are all essential. To-
gether, they enable SF-Recon to achieve lightweight yet struc-
turally faithful building-surface reconstructions.

5.3 Discussion

In addition, we find that the resolution of input images can
severely influence the final lightweight surface model; thus, a
corresponding discussion is presented. In particular, SF-Recon,
2DGS, PGSR, and Metashape are evaluated on images with
resolutions of 1000 x 1000 and 500 x 500. As shown in
Table 3 and Fig.5, SF-Recon performs consistently well at both
resolutions and is more insensitive to resolution changes. In
contrast, Metashape works better at higher resolutions and is
significantly degraded at lower resolutions, occasionally fail-
ing to reconstruct entire buildings. 2DGS and PGSR, how-
ever, remain worse across both resolutions. These findings can
imply that traditional geometric reconstruction methods, like
Metashape, are highly resolution-dependent, requiring higher-
resolution imagery to recover fine details. On the other hand,
3DGS-based methods such as SF-Recon maintain stable recon-
struction quality even with lower-resolution inputs, demonstrat-
ing superior robustness for lightweight building modeling.



Table 3. Quantitative evaluation on the SF dataset at two resolutions: 1000 x 1000 vs 500 x 500. Best values are in bold.

Method 1000 x 1000 500 x 500

Faces Vertices Time (min) RMSE (m) Faces Vertices Time (min) RMSE (m)
PGSR 1063 563 28.3 0.2874 1057 585 20.3 0.2887
2DGS 1137 561 12.3 0.3809 1168 566 10.2 0.3819
Metashape 1153 518 2.7 0.2652 1137 495 1.5 0.2841
SF-Recon (10000) 926 472 2.9 0.0763 994 506 2.1 0.1092
SF-Recon (30000) 914 467 9.5 0.0456 986 503 7.2 0.0842

Despite better high-quality lightweight models can be achieved
across various resolutions, our SF-Recon has several limita-
tions. Compared to traditional labor-intensive pipelines that
simplify high-complexity meshes, SF-Recon retains an excess
of vertices along edges, yielding redundant faces and an in-
sufficiently simplified mesh. Additionally, boundary-mask ex-
traction from normals is effective when multi-view imagery
provides high coverage and rich textures, but its performance
deteriorates in texture-poor regions. Moreover, the computa-
tional efficiency requires further improvement.

6. Conclusion

In this work, we introduced SF-Recon, a novel framework
using 3DGS to reconstruct lightweight building surfaces dir-
ectly from multi-view images, eliminating the need for post-
hoc mesh simplification. By leveraging 3D Gaussian Splatting
(3DGS) combined with a normal-gradient-guided optimization
and multi-view edge-consistency pruning, SF-Recon captures
building structure with high fidelity while maintaining compu-
tational efficiency. The approach preserves essential building
features such as rooflines and wall boundaries, achieving higher
accuracy with a similar number of faces and vertices compared
to other methods. Additionally, SF-Recon demonstrates su-
perior robustness to variations in image resolution, performing
consistently well across different resolutions, unlike traditional
methods that are highly resolution-dependent. SF-Recon shows
promising results but has yet limitations, including higher face
and vertex counts, lower accuracy, and performance degrada-
tion in texture-poor regions. Future work will focus on improv-
ing efficiency and robustness.
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